extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1(C2×Dic7) = C24⋊Dic7 | φ: C2×Dic7/C14 → C4 ⊆ Aut C23 | 56 | 4 | C2^3.1(C2xDic7) | 448,93 |
C23.2(C2×Dic7) = (C22×C28)⋊C4 | φ: C2×Dic7/C14 → C4 ⊆ Aut C23 | 112 | 4 | C2^3.2(C2xDic7) | 448,96 |
C23.3(C2×Dic7) = (D4×C14).16C4 | φ: C2×Dic7/C14 → C4 ⊆ Aut C23 | 112 | 4 | C2^3.3(C2xDic7) | 448,771 |
C23.4(C2×Dic7) = (D4×C14)⋊10C4 | φ: C2×Dic7/C14 → C4 ⊆ Aut C23 | 112 | 4 | C2^3.4(C2xDic7) | 448,774 |
C23.5(C2×Dic7) = C24.2D14 | φ: C2×Dic7/C14 → C22 ⊆ Aut C23 | 112 | | C2^3.5(C2xDic7) | 448,84 |
C23.6(C2×Dic7) = (C2×C28).Q8 | φ: C2×Dic7/C14 → C22 ⊆ Aut C23 | 112 | 4 | C2^3.6(C2xDic7) | 448,90 |
C23.7(C2×Dic7) = C24.8D14 | φ: C2×Dic7/C14 → C22 ⊆ Aut C23 | 224 | | C2^3.7(C2xDic7) | 448,485 |
C23.8(C2×Dic7) = C42.187D14 | φ: C2×Dic7/C14 → C22 ⊆ Aut C23 | 224 | | C2^3.8(C2xDic7) | 448,534 |
C23.9(C2×Dic7) = C28⋊3M4(2) | φ: C2×Dic7/C14 → C22 ⊆ Aut C23 | 224 | | C2^3.9(C2xDic7) | 448,546 |
C23.10(C2×Dic7) = C24.19D14 | φ: C2×Dic7/C14 → C22 ⊆ Aut C23 | 224 | | C2^3.10(C2xDic7) | 448,755 |
C23.11(C2×Dic7) = C28.76C24 | φ: C2×Dic7/C14 → C22 ⊆ Aut C23 | 112 | 4 | C2^3.11(C2xDic7) | 448,1272 |
C23.12(C2×Dic7) = C22⋊C4×Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C23 | 224 | | C2^3.12(C2xDic7) | 448,475 |
C23.13(C2×Dic7) = C24.47D14 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C23 | 224 | | C2^3.13(C2xDic7) | 448,484 |
C23.14(C2×Dic7) = C28.5C42 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C23 | 224 | | C2^3.14(C2xDic7) | 448,531 |
C23.15(C2×Dic7) = C42.43D14 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C23 | 224 | | C2^3.15(C2xDic7) | 448,533 |
C23.16(C2×Dic7) = D4×C7⋊C8 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C23 | 224 | | C2^3.16(C2xDic7) | 448,544 |
C23.17(C2×Dic7) = C42.47D14 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C23 | 224 | | C2^3.17(C2xDic7) | 448,545 |
C23.18(C2×Dic7) = (D4×C14).11C4 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C23 | 224 | | C2^3.18(C2xDic7) | 448,768 |
C23.19(C2×Dic7) = C2×Q8.Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C23 | 224 | | C2^3.19(C2xDic7) | 448,1271 |
C23.20(C2×Dic7) = C24.Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 112 | | C2^3.20(C2xDic7) | 448,82 |
C23.21(C2×Dic7) = C24.D14 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 112 | | C2^3.21(C2xDic7) | 448,83 |
C23.22(C2×Dic7) = (C2×C28)⋊C8 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.22(C2xDic7) | 448,85 |
C23.23(C2×Dic7) = C28.(C4⋊C4) | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.23(C2xDic7) | 448,87 |
C23.24(C2×Dic7) = C4×C4.Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.24(C2xDic7) | 448,456 |
C23.25(C2×Dic7) = C28⋊7M4(2) | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.25(C2xDic7) | 448,458 |
C23.26(C2×Dic7) = C42.6Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.26(C2xDic7) | 448,459 |
C23.27(C2×Dic7) = C42.7Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.27(C2xDic7) | 448,460 |
C23.28(C2×Dic7) = C24.4Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 112 | | C2^3.28(C2xDic7) | 448,741 |
C23.29(C2×Dic7) = C4×C23.D7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.29(C2xDic7) | 448,743 |
C23.30(C2×Dic7) = C24.63D14 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.30(C2xDic7) | 448,745 |
C23.31(C2×Dic7) = C23.27D28 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.31(C2xDic7) | 448,746 |
C23.32(C2×Dic7) = C2×C28.D4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 112 | | C2^3.32(C2xDic7) | 448,750 |
C23.33(C2×Dic7) = C2×C28.10D4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.33(C2xDic7) | 448,760 |
C23.34(C2×Dic7) = C25.D7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 112 | | C2^3.34(C2xDic7) | 448,781 |
C23.35(C2×Dic7) = C22×C4.Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.35(C2xDic7) | 448,1234 |
C23.36(C2×Dic7) = C2×C23.21D14 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C23 | 224 | | C2^3.36(C2xDic7) | 448,1239 |
C23.37(C2×Dic7) = (C2×C28)⋊3C8 | central extension (φ=1) | 448 | | C2^3.37(C2xDic7) | 448,81 |
C23.38(C2×Dic7) = C2×C4×C7⋊C8 | central extension (φ=1) | 448 | | C2^3.38(C2xDic7) | 448,454 |
C23.39(C2×Dic7) = C2×C42.D7 | central extension (φ=1) | 448 | | C2^3.39(C2xDic7) | 448,455 |
C23.40(C2×Dic7) = C2×C28⋊C8 | central extension (φ=1) | 448 | | C2^3.40(C2xDic7) | 448,457 |
C23.41(C2×Dic7) = C2×C28.55D4 | central extension (φ=1) | 224 | | C2^3.41(C2xDic7) | 448,740 |
C23.42(C2×Dic7) = C2×C14.C42 | central extension (φ=1) | 448 | | C2^3.42(C2xDic7) | 448,742 |
C23.43(C2×Dic7) = C23×C7⋊C8 | central extension (φ=1) | 448 | | C2^3.43(C2xDic7) | 448,1233 |
C23.44(C2×Dic7) = C22×C4×Dic7 | central extension (φ=1) | 448 | | C2^3.44(C2xDic7) | 448,1235 |
C23.45(C2×Dic7) = C22×C4⋊Dic7 | central extension (φ=1) | 448 | | C2^3.45(C2xDic7) | 448,1238 |